
Allbridge Estrela

Stellar Audit Bank

Reference 24-03-1573-REP
Version 1.1

Date 2024/04/23

Quarkslab SAS
10 boulevard Haussmann

75009 Paris
France

1. Project Information

Document history
Version Date Details Authors

1.0 2024/04/03 Initial version Elouan Wauquier
Madigan Lebreton

1.1 2024/04/23 Fixes review Madigan Lebreton

Quarkslab
Contact Role Contact Address

Frédéric Raynal CEO fraynal@quarkslab.com

Pauline Sauder Project Manager psauder@quarkslab.com

Stavia Salomon Sales ssalomon@quarkslab.com

Elouan Wauquier R&D Engineer ewauquier@quarkslab.com

Madigan Lebreton R&D Engineer mlebreton@quarkslab.com

Allbridge
Contact Role Contact Address

Yuriy Savchenko CTO & Co-founder ys@allbridge.io

Ref.: 24-03-1573-REP 1 Quarkslab SAS

Contents

1 Project Information 1

2 Executive Summary 3
2.1 Context . 3
2.2 Objectives . 3
2.3 Methodology . 3
2.4 Disclaimer . 3
2.5 Findings Summary . 3
2.6 Recommendations and Action Plan . 4
2.7 Conclusion . 5
2.8 Fixes . 5

3 Manual review 6
3.1 Factory . 6

3.1.1 Purpose . 6
3.1.2 Storage . 6
3.1.3 Permissioned functionality . 7
3.1.4 View functionality . 8

3.2 Pool . 9
3.2.1 Purpose . 9
3.2.2 Storage . 9
3.2.3 Permissioned functionality . 9
3.2.4 Computations . 10
3.2.5 Fees . 14

4 Appendix 16
4.1 Factory contract interface . 16
4.2 Pool contract interface . 17

Ref.: 24-03-1573-REP 2 Quarkslab SAS

2. Executive Summary

2.1 Context

This report presents the work of the collaboration between Allbridge and Quarkslab, as defined
in 24-03-1559-PRO . Quarkslab’s objective was to conduct a security assessment of two (2) smart
contracts for a Soroban decentralized exchange called Estrela.

The audit parameter was defined by the content of the following GitHub repository: allbridge-
io/dex-soroban-contracts at commit 56be1f00868f25cd67b07aab132138060406114e .

2.2 Objectives

The purpose was to discover potential security misconfigurations, weaknesses, and vulnerabilities
that can be leveraged or exploited by attackers being able to interact directly with the liquidity
pools and the factory. To that end, Quarkslab proposed the following approach:

2.3 Methodology

1. Discovery and set-up phase;
2. Manual code review;
3. Testing;
4. Report, Audit and Project Management.

2.4 Disclaimer

This report reflects the work and results obtained within the duration of the audit for the
specified scope in 24-03-1559-PRO as agreed between Allbridge and Quarkslab. Tests are not
guaranteed to be exhaustive and the report does not ensure that the application is bug-free.

2.5 Findings Summary

ID Name Perimeter
HIGH-1 Overflow risk for some values Pool contract
LOW-1 Centralization risk for trusted admin Factory contract
LOW-2 Centralization risk for trusted admin Pool contract
INFO-1 Pool creation may be capped after several deployments Factory storage
INFO-2 Overflow in internal function Common
INFO-3 Full fees on liquidity withdrawal Pool contract fee system

Ref.: 24-03-1573-REP 3 Quarkslab SAS

https://github.com/allbridge-io/dex-soroban-contracts
https://github.com/allbridge-io/dex-soroban-contracts
https://github.com/allbridge-io/dex-soroban-contracts/tree/56be1f00868f25cd67b07aab132138060406114e

INFO-4 Code duplication for sending rewards Pool contract reward
computation

Severity: critical, high, medium, low, info

2.6 Recommendations and Action Plan

Recommendations

ID Recommendations Perimeter
HIGH-1 Explicitely use overflow-safe operations on U256, such as

U256::checked_add and U256::checked_mul .
Also limit A to be in a safe range on initialization and con-
figuration.

Pool contract

LOW-1 Consider limiting the amount of trust allocated to the
Admin . The issue can be mitigated through several ways

such as delegating the Admin role to a Decentralized Au-
tonomous Organization (DAO) mechanism or to a multi-
signature wallet.
Note: The provided mitigations decrease the likelihood of
the issue. Decreasing the impact doesn’t seem to be possible
without removing the functionality.

Factory contract

LOW-2 Consider limiting the amount of trust allocated to the
Admin . The issue can be mitigated through several ways

such as delegating the Admin role to a Decentralized Au-
tonomous Organization (DAO) or to a multi-signature wal-
let.
Note: The provided mitigations decrease the likelihood of
the issue. Decreasing the impact doesn’t seem to be possible
without removing the functionality.

Pool contract

INFO-1 Consider limiting the number of deployed pools.
Note: Considering the low number of known stablecoins,
this issue is unlikely to occur.

Factory storage

INFO-2 Use U256 when multiplying large integers. Common
INFO-3 Do not apply a fee when withdrawing liquidity. Pool contract fee system
INFO-4 Remove code duplication. Pool contract reward

computation

Severity: critical, high, medium, low, info

Ref.: 24-03-1573-REP 4 Quarkslab SAS

2.7 Conclusion

With a trusted administrator (e.g. a DAO) and common configuration parameters, the pool is
safe from exploits to the best of our knowledge.

However, when configured with a high amplification parameter (A ≥ 121), the DEX may be
vulnerable to a theft of its liquidity.

In addition, we expressed recommendations on the fee system and some coding practices.

2.8 Fixes

On the 2024/04/22, Quarkslab reviewed the fixes implemented following the reported vulnera-
bilities. The reviewed commit is ddf0b18289dbcc7631b97551531eb8ef79d5ffbf .

ID Name Fix status
HIGH-1 Overflow risk for some values 3

LOW-1 Centralization risk for trusted admin 7

LOW-2 Centralization risk for trusted admin 7

INFO-1 Pool creation may be capped after several deployments 3

INFO-2 Overflow in internal function 3

INFO-3 Full fees on liquidity withdrawal 7

INFO-4 Code duplication for sending rewards 3

Severity: critical, high, medium, low, info
Fix status: 7 acknowledged, ∼ mitigated, 3 fixed

LOW-1 and LOW-2 were acknowledged by Allbridge, the administrator of the
contract needs to be trusted.

INFO-3 was acknowledged by Allbridge, fees on liquidity withdrawal are expected.

Ref.: 24-03-1573-REP 5 Quarkslab SAS

https://github.com/allbridge-io/dex-soroban-contracts/tree/ddf0b18289dbcc7631b97551531eb8ef79d5ffbf

3. Manual review

3.1 Factory

3.1.1 Purpose
The factory contract allows its administrator to deploy and initialize liquidity pool for a pair of
tokens.

3.1.2 Storage

The factory smart contract stores the association of the pair of tokens (often called ”token A”
and ”token B”) and its corresponding deployed liquidity pool.

At the Instance level, it remembers the following data:

• the address of the administrator, with the symbol "Admin";
• the factory’s specific data, with the symbol "FactoryInfo";

The FactoryInfo structure stores the factory’s specific data. Two fields are defined in this
specific structure:

• wasm_hash : a 32-byte hash corresponding to the pool’s code hash;
• pairs : a map that associates a pair of tokens to its deployed pool contract;

The Instance level is appropriate for the configured fields.

INFO INFO-1 Pool creation may be capped after several deployments

Perimeter Factory storage

Fix status 3

Description

The Soroban documentation states that a ”ledger entry is read or written from the ledger in
its entirety; there is no way to read or write ”only a part” of a CONTRACT_DATA ledger
entry”.
In the case of the factory, it means that the pairs map stored in the FactoryInfo ledger
entry may not be readable or writable if too many pools are deployed.

Recommendation

Consider limiting the number of deployed pools.
Note: Considering the low number of known stablecoins, this issue is unlikely to occur.

Ref.: 24-03-1573-REP 6 Quarkslab SAS

https://developers.stellar.org/docs/learn/smart-contract-internals/persisting-data#granularity

The issue was fixed by capping the number of pairs to 20.

3.1.3 Permissioned functionality

• The factory’s initialize method can be called only when the FactoryInfo structure
in Instance storage does not exist. Since the TTL of the contract instance and all globals
are tied together, there is no risk of this field expiring before the contract instance.

Anyone can call this function, but it can be called only once overall. It configures the con-
tract’s administrator and initializes the FactoryInfo with the wasm_hash parameter.

The initialize method should be called first, and the contract should not
be used unless a trusted party has successfully called this function.

Once the contract is initialized, all the modifying state functions are access controlled.
They check that the configured administrator has authorized the transaction before mod-
ifying the contract’s state.

• create_pair lets the administrator deploy a new pool contract for a pair of tokens.

• set_admin allows the administrator to transfer ownership of the contract to another
address.

• update_wasm_hash lets the administrator modify the wasm_hash used during pool de-
ployment. It will update the WASM code of the pool contract. Modifying this parameter
will not impact the pools already deployed, only the new pools will be affected.

• upgrade is available to update the factory executable WASM. The administrator can
upgrade the logic of this contract. The new executable will be updated after the current
invocation, in case it runs successfully

Ref.: 24-03-1573-REP 7 Quarkslab SAS

LOW LOW-1 Centralization risk for trusted admin

Likelihood Impact

Perimeter Factory contract

Prerequisites Admin role

Fix status 7

Description

Factory has an Admin address with privileged rights to perform admin tasks such as pool
contract’s code update. Admin needs to be trusted to not perform malicious updates.
A malicious update of the pool contract’s hash leads to the deployment of malicious pool
contracts. Users’ funds may be at risk in newly deployed pools.

Recommendation

Consider limiting the amount of trust allocated to the Admin . The issue can be mitigated
through several ways such as delegating the Admin role to a Decentralized Autonomous
Organization (DAO) mechanism or to a multi-signature wallet.
Note: The provided mitigations decrease the likelihood of the issue. Decreasing the impact
doesn’t seem to be possible without removing the functionality.

The issue was acknowledged.

3.1.4 View functionality

Four (4) view functions are defined in the factory smart contract. These functions are permis-
sionless, they let users retrieve information about the state of the protocol.

• pool takes a pair of tokens as input and returns the associated deployed pool contract.
If none exists, an Error::NotFound is returned.

• pools returns a map of all the deployed pools with their associated pair of tokens.

• get_wasm_hash returns the configured WebAssembly code hash if it exists, an error
otherwise.

• get_admin returns the current administrator address if it exists, an error otherwise.

Ref.: 24-03-1573-REP 8 Quarkslab SAS

3.2 Pool

3.2.1 Purpose

The pool is an Automatic Market Maker (AMM) using the StableSwap invariant. It holds
liquidity and provides a market price for two tokens (supposedly stablecoins).

Liquidity providers mint virtual LP tokens when providing liquidity (representing their share
of the pool’s balance), but these tokens are not real tokens (e.g. not transferable). These are
burnt when the corresponding liquidity is withdrawn.

3.2.2 Storage
The pool stores the details of liquidity providers and the state of the pool. We found the choice
of storage level appropriate for the types of data stored.

Instance

At the Instance level, the pool remembers the following data:

• the address of the administrator, with the symbol “Admin”;

• the pool’s specific data, with the symbol “Pool”, i.e.,

– token related data in tokens , tokens_decimals , and token_balances ;

– the amount of liquidity as total_lp_amount ;

– the fee schedule as fee_share_bp and admin_fee_share_bp (by increments of
0.01% since BP = 10 000);

– fee reward amounts in acc_rewards_per_share_p and admin_fee_amount ; and

– the StableSwap “amplify” parameter (A) as a .

All these fields have a fixed size, thus cannot grow uncontrollably.

Persistent

At the Persistent level, the pool stores UserDeposit s, containing the amount of liquidity
deposited (as lp_amount) and the amount of rewards claimed (as reward_debts).

Temporary

No Temporary storage is used.

3.2.3 Permissioned functionality

• The pool’s initialize method can be called only when the Pool structure in Instance
storage does not exist. Since the TTL of the contract instance and all globals are tied
together, there is no risk of this field expiring before the contract instance.

Ref.: 24-03-1573-REP 9 Quarkslab SAS

https://curve.fi/files/stableswap-paper.pdf
https://curve.fi/files/stableswap-paper.pdf

Anyone can call this function, but it can be called only once overall. It configures the
administrator of the contract and initializes the Pool .

The initialize method should be called first, and the contract should not
be used unless a trusted party has called this function successfully. When
the factory creates a new pool, this function is automatically called.

• set_admin allows the administrator to transfer ownership of the contract to another
address.

• set_admin_fee_share and set_fee_share allow the administrator to configure the
pool’s fee rates.

• upgrade is available to update the pool’s code. The administrator can upgrade the logic
of this contract. The new executable will be updated after the current invocation, in case
it runs successfully.

LOW LOW-2 Centralization risk for trusted admin

Likelihood Impact

Perimeter Pool contract

Prerequisites Admin role

Fix status 7

Description

Factory has an Admin address with privileged rights to perform admin tasks such as pool
contract’s code update. Admin needs to be trusted to not perform malicious updates.
A malicious update of the pool contract’s code can allow an admin to pull user’s funds.

Recommendation

Consider limiting the amount of trust allocated to the Admin . The issue can be mitigated
through several ways such as delegating the Admin role to a Decentralized Autonomous
Organization (DAO) or to a multi-signature wallet.
Note: The provided mitigations decrease the likelihood of the issue. Decreasing the impact
doesn’t seem to be possible without removing the functionality.

The issue was acknowledged.

3.2.4 Computations
The pool uses the StableSwap invariant developed for the Curve protocol. It ensures the pool
always has some liquidity for swapping assets while maintaining a low slippage, and is designed
for stablecoins.

Ref.: 24-03-1573-REP 10 Quarkslab SAS

https://curve.fi/files/stableswap-paper.pdf

The invariant is

Ann
n∑

i=1

xi +D = ADnn +
Dn+1

nn
∏n

i=1 xi
,

where

• D is “the total amount of coins when they have an equal price”.

• A is an “amplification coefficient” akin to a leverage when the pool is balanced. When
the pool is imbalanced, it loses its power and leverage decreases. The actual “leverage”
value is χ = A

∏n
i=1 xi

(D/n)n
, with

∏n
i=1 xi =

(
D
n

)n when the pool is balanced. A should be tuned
according to the expected liquidity and volatility of the tokens.

Allbridge uses pools with only 2 assets (denoted x and y), turning the invariant into

4A(x+ y) +D = 4AD +
D3

4xy

All functions need to maintain this invariant at least (except for rounding and fees).

We evaluated the mathematical functions for correctness and paid attention to the
following details.

• The smart contract is compiled with profile.release.overflow-checks =
true, thus arithmetic operations may crash the smart contract.

• Even with the above flag set, ethnum::U256 overflows silently (i.e. wraps),
even in release mode.

• The logical shift operators >> and << are exempt from overflow checks.
This has no impact for right shifts but may cause unwanted overflows for left
shifts.

• Values are not real integers, rather they are fixed point numbers which dec-
imal count can be token-specific or the SYSTEM_PRECISION = 3. Multiplica-
tions, divisions and roots can affect the dimension of these numbers.

Utilitary functions

When solving the invariant equation, the pool needs to compute square and cubic roots. These
are defined in common/shared/src/utils/num.rs .

We verified that pub fn sqrt(n: &U256) -> U256 computes ⌊
√
n⌋ using fuzzing and manual

code review. The left shift is bounded to 1 << 254. No arithmetic operations risk overflowing.

We verified that pub fn cbrt(n: &U256) -> u128 computes ⌊ 3
√
n⌋ using fuzzing and manual

code review. Since 3
√
U256 :: MAX <

3
√
2256 = 2256/3 < 286 < u128 :: MAX, the return type can fit

the result value. For the same reason, the left shift cannot overflow. However, on line 29, the
computation of hi * hi may overflow (i.e. panic!()) for large values of n (n ≥ 2192).

Ref.: 24-03-1573-REP 11 Quarkslab SAS

https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/common/shared/src/utils/num.rs#L29

We verified this by adding this test to common/shared/src/utils/num.rs :

#[cfg(test)]
mod tests {

use super::*;

#[test]
#[should_panic(expected = "attempt to multiply with overflow")]
fn cbrt_panic() {

cbrt(&(U256::ONE << 192));
}

}

We traced the (only) calling site, and found no way to reach this issue because of the
pub(crate) const MAX_TOKEN_BALANCE: u128 = 2u128.pow(40) constraint, hence the lower im-
pact score.

INFO INFO-2 Overflow in internal function

Perimeter Common

Fix status 3

Description

The cbrt function can panic for some values within its domain. This cannot be reached.

Recommendation

Use U256 when multiplying large integers.

The issue was fixed by handling the error.

Invariant computation

During the pool’s operation, x, y and D vary. To maintain the invariant, each of these variables
need to be expressed in terms of the others.

• A is set at initialization time;

• D is the amount of liquidity (in total_lp_amount);

• x and y are the token balances with system precision (in token_balances and token_decimals).

The amount of liquidity D is computed in pub fn get_d(&self, x: u128, y: u128) -> u128.

Given its upper bound of 240, we found no way to lock the smart contract or perform incorrect
computations for reasonable values of A. However, we still recommend checking for overflows
manually in ethnum::U256.

The x and y variable play equivalent roles, so a single function is required:
pub fn get_y(&self, native_x: u128, d: u128) -> Result<u128, Error>.

Ref.: 24-03-1573-REP 12 Quarkslab SAS

https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/common/shared/src/utils/num.rs
https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/contracts/pool/src/methods/internal/pool.rs#L23
https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/contracts/pool/src/methods/internal/pool.rs#L271-L290
https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/contracts/pool/src/methods/internal/pool.rs#L249-L265

For A ≥ 121, we found it possible to trigger an overflow on line 280.

HIGH HIGH-1 Overflow risk for some values

Likelihood Impact

Perimeter Pool contract

Prerequisites A ≥ 121

Fix status 3

Description

An overflow can happen in Pool::get_d when depositing liquidity. This can lead to incorrect
bookkeeping of the pool’s liquidity tokens, increasing their value. In turn, this enables an
attacker to withdraw more tokens than they deposited.

Recommendation

Explicitely use overflow-safe operations on U256, such as U256::checked_add and
U256::checked_mul .

Also limit A to be in a safe range on initialization and configuration.

The issue was fixed by capping the value of A to 60 and by using overflow-safe
operations.

Swaps

The swap function uses get_receive_amount to compute the new token balances and re-
wards.

The user can specify the minimum amount they expect to receive. This mitigates the effects
of volatility and sandwich attacks, which is common practice for automatic market makers.

Deposit

The deposit function uses get_deposit_amount to compute the new balances and the up-
dated amount of LP tokens. It then collects the stablecoins and delivers the LP tokens to the
user. Finally, it hands the user their pending rewards (as if they had called claim_rewards ,
see the section on rewards).

Withdraw

The withdraw function uses get_withdraw_amount to compute the withdrawn amounts and
fees. It then transfers the tokens to the user along with pending rewards (as if they had called
claim_rewards , see the section on rewards), and burns the specified amount of LP tokens.

Ref.: 24-03-1573-REP 13 Quarkslab SAS

https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/contracts/pool/src/methods/internal/pool.rs#L280

INFO INFO-3 Full fees on liquidity withdrawal

Perimeter Pool contract fee system

Fix status 7

Description

Liquidity providers pay fees on the full liquidity they withdraw, which may be unexpected by
users.

Recommendation

Do not apply a fee when withdrawing liquidity.

The issue was acknowledged, it is expected behavior.

Rewards

The claim_rewards function computes and transfers the pending rewards for a user. Pending
rewards are also computed and sent separately when withdrawing and depositing liquidity.

INFO INFO-4 Code duplication for sending rewards

Perimeter Pool contract reward computation

Fix status 3

Description

Pending rewards for liquidity providers are computed separately in get_pending and
claim_rewards . The total reward share of liquidity providers are computed separately

in get_pending and get_reward_debts .

Recommendation

Remove code duplication.

The issue was fixed by removing duplicated code.

3.2.5 Fees
The pool collects two types of fees:

• regular fees (configured in Pool::fee_share_bp): a percentage of every swap and every
withdrawal.

• admin fees (configured in Pool::admin_fee_share_bp): a percentage of the regular fees.

Ref.: 24-03-1573-REP 14 Quarkslab SAS

https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/contracts/pool/src/methods/internal/pool.rs#L228
https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/contracts/pool/src/methods/internal/pool.rs#L187
https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/contracts/pool/src/methods/internal/pool.rs#L228
https://github.com/allbridge-io/dex-soroban-contracts/blob/56be1f00868f25cd67b07aab132138060406114e/contracts/pool/src/methods/internal/pool.rs#L241

During initialization and pool configuration, the fees can be set to [0, 100%):

k

Pool :: BP
, where k ∈ J0, Pool :: BP− 1K and Pool :: BP = 10 000.

Admin fees accumulate in Pool::admin_fee_amount, which is reset to 0 when the admin
collects the fees.

Liquidity provider fees accumulate in Pool::acc_rewards_per_share_p. When a liquidity
provider collects their fee, the total amount they collected so far is saved in their UserDeposit::reward_debts
and cannot be collected again.

Rewards are tracked seperately for both tokens, so that variations in the pool’s balance does
not impact past rewards.

Ref.: 24-03-1573-REP 15 Quarkslab SAS

4. Appendix

4.1 Factory contract interface

External function Access control Operations

initialize 7 Read, Write

create_pair 3 Read, Write

set_admin 3 Read, Write

update_wasm_hash 3 Read, Write

upgrade 3 Read, Write

pool 7 Read-only

pools 7 Read-only

get_wasm_hash 7 Read-only

get_admin 7 Read-only

Ref.: 24-03-1573-REP 16 Quarkslab SAS

4.2 Pool contract interface

External function Access control Operations

initialize 7 Read, Write

upgrade 3 Read, Write

set_admin 3 Read, Write

set_admin_fee_share 3 Read, Write

set_fee_share 3 Read, Write

deposit 7 Read, Write

withdraw 7 Read, Write

swap 7 Read, Write

claim_rewards 7 Read, Write

pending_reward 7 Read-only

get_pool 7 Read-only

get_user_deposit 7 Read-only

get_d 7 Read-only

get_receive_amount 7 Read-only

get_send_amount 7 Read-only

get_withdraw_amount 7 Read-only

get_deposit_amount 7 Read-only

get_admin 7 Read-only

Ref.: 24-03-1573-REP 17 Quarkslab SAS

	Project Information
	Executive Summary
	Context
	Objectives
	Methodology
	Disclaimer
	Findings Summary
	Recommendations and Action Plan
	Conclusion
	Fixes

	Manual review
	Factory
	Purpose
	Storage
	Permissioned functionality
	View functionality

	Pool
	Purpose
	Storage
	Permissioned functionality
	Computations
	Fees

	Appendix
	Factory contract interface
	Pool contract interface

