w SHERLOCK

Security Review For

Public Audit Contest Prepared For: Allbridge

Lead Security Expert: EgisSecurity
Date Audited: July 25 - July 28, 2025

Final Commit: 2b70f36

https://github.com/EgisSecurity
https://github.com/allbridge-public/core-auto-evm-contracts/tree/2b70f36dbfd6151cdc039791c4e539ff2d585f09

Introduction

Allbridge Core is a cross-chain bridge specialized on stable coin value transfer. Such
transfers are enabled by token pools, where liquidity providers can earn rewards for their
deposits. And a new feature, called Allbridge Core Yield, makes the tokens locked in
Allbridge Core pools liquid, represented as a yield bearing 100% backed stable coin. This
feature starts with Celo blockchain and will expand to other blockchains later.

Scope

Repository: allbridge-public/core-auto-evm-contracts
Audited Commit: d79882a8a7f2793cb3f7fcb21a9b317a7639846a
Final Commit: 2b70f36dbfd6151cdc039791c4e539ff2d585f09
Files:

» contracts/lib/MultiUint.sol

« contracts/lib/PoolUtils.sol

« contracts/MultiToken.sol

» contracts/PortfolioToken.sol

o contracts/VirtualMultiToken.sol

Final Commit Hash
2b70f36dbfd6151cdc039791c4e539fF2d585F09

Findings
Each issue has an assigned severity:

« Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

« High issues are directly exploitable security vulnerabilities that need to be fixed.

Issues Found

High Medium

0 2

https://github.com/allbridge-public/core-auto-evm-contracts/tree/2b70f36dbfd6151cdc039791c4e539ff2d585f09

Issues Not Fixed and Not Acknowledged

Security experts who found valid issues

OxDemon
OxEkko

OxFlare
Oxloophole
AshishLac
BobbyAudit
EgisSecurity
Emine
HeckerTrieuTien

LeFy

Mishkaté45]

MysteryAuditor

Olugbenga-ayo

Phaethon

WillyCode20

XOsauce
alicrali33

anonymousjoe

Hurricane

ara

Medium

blockace

iamOti
ivanalexandur
magiccentaur
omeiza

s4bot3ur

v10gl
veerendravamshi
xiaoming?0
zxriptor

https://github.com/Emanueldlvg
https://github.com/0xEkkoo
https://github.com/0xHacker2684
https://github.com/0xloophole
https://github.com/AshishLach
https://github.com/BobbyAudit
https://github.com/EgisSecurity
https://github.com/EmineShaban
https://github.com/game1340
https://github.com/HPxADT
https://github.com/xLeFYx
https://github.com/Mishkat6541
https://github.com/MysteryAuditor
https://github.com/Olugbenga-ayo
https://github.com/Yilong-Chen
https://github.com/willycode20
https://github.com/x0sauce
https://github.com/alicrali33
https://github.com/anonjob
https://github.com/0xAdityaRaj
https://github.com/blockace256
https://github.com/iam0ti
https://github.com/ivanalexandur
https://github.com/magiccentaur
https://github.com/jayjay64th
https://github.com/s4bot3ur
https://github.com/v10g1
https://github.com/MKVEERENDRA
https://github.com/xiaoming9090
https://github.com/zxriptor

Issue M-1: Attacker can steal 100% of users deposits

Source:
https://github.com/sherlock-audit/2025-07-allbridge-core-yield-judging/issues/173

This issue has been acknowledged by the team but won't be fixed at this time.

Found by

OxEkko, OxFlare, AshishLac, BobbyAudit, EgisSecurity, HeckerTrieuTien, LeFy,
Olugbenga-ayo, Phaethon, XOsauce, alicrali33, anonymousjoe, araj, blockace, iamOti,
ivanalexandur, magiccentaur, s4bot3ur, vi0gl, veerendravamshi, xiaoming?0, zxriptor

Summary

| want to specify this can happen with any tokens | have just given the example with leé.

If an attacker donates a very large amount in the contract, then on the first deposit the
contract calls _subDepositRewardsPoolCheck, which will deposit the amount that the
address holds of the token into the pool, making totalVirtual inflated.

However the first depositor can also be the attacker, the logic of the contract is that if
realTotal is O we mint 11, if the attacker calls deposit with 1000 wei(because we need to
get around the amountSP calculation in pool.deposit which will yield a 1 wei deposit out
of the 1000 wei), then the attacker can set realTotal to 1 wei

How the attack will happen:

l.Attacker calls deposit Ist, he sets realTotal = 1 wei, then he sees userl want to donates
10e6, he front-runs him and transfers 10e6) to the contract, the contract assumes this is a
reward and deposits it into the pool, which will make virtualTotal:10e3+ 1, and realTotal:1
wei

2. User2 deposits, he gets to the part where erc20 has to be minted to him:
out := div(mul(virtualAmount, realTotal), totalVirtual)

Now virtualAmount is 10e3, realTotal is 1 wei, and totalVirtual is 10e3 + 1, which makes (
10e3*1)/10e3=0

What happens if out = zero in _mintAfterTotalChanged: if (realAmount == 0) { return;
}

We return to the deposit but we do NOT revert

Now attacker calls withdraw the formula inside burn is: realTotal * (amount / totalVir
tual), so realTotal is 1, amount = 20eé , totalVirtual is 20eé: (1 * (20e6/20e6) = 1, the
attacker withdraws his initial donation + the user transfer.

The attacker can donate on every transfer users make so their deposits mint O erc20 and
with his 1 erc20 he can steal all of the users deposits

4

https://github.com/sherlock-audit/2025-07-allbridge-core-yield-judging/issues/173
https://github.com/sherlock-audit/2025-07-allbridge-core-yield/blob/main/core-auto-evm-contracts/contracts/PortfolioToken.sol#L152
https://etherscan.io/address/0x7dbf07ad92ed4e26d5511b4f285508ebf174135d#code

Root Cause

Inside _mintAfterTotalChanged the contract should revert if realAmount ==

Internal Pre-conditions

Attacker needs to be first to call deposit with 1000 wei

External Pre-conditions

Attack Path

Described

Impact

Attacker can steal 100% of users deposits, Impact: HIGH

PoC

Mitigation

Revert inside mintAfterTotalChanged instead of returning:

uint256 realAmount = _fromVirtualAfterTotalChangedForMint (virtualAmount, index);
if (realAmount == 0) {
revert;
}

return MultiToken. mint(account, realAmount, index);

Add a minAmountln deposit

Implement a new reward system which tracks how much rewards did the contract
actually receive from the pool

If you are worried about dust amounts implement a onlyOwner function which sweeps
any amounts from contract into the pool, that way the owner can foresee if direct
transfers will hurt the system in any way

Issue M-2: No slippage control

Source:
https://github.com/sherlock-audit/2025-07-allbridge-core-yield-judging/issues/241

Found by

OxDemon, Oxloophole, BobbyAudit, EgisSecurity, Emine, Hurricane, Mishkat645]1,
MysteryAuditor, WillyCode20, X0sauce, alicrali33, omeiza, veerendravamshi, xiaoming?0

Summary

Root Cause

Internal Pre-conditions

External Pre-conditions

Attack Path

It was observed that the PortfolioToken.deposit () function does not have slippage
controls.

https://github.com/sherlock-audit/2025-07-allbridge-core-yield/blob/main/core-auto-
evm-contracts/contracts/PortfolioToken.sol#L33

File: PortfolioToken.sol

28: /%

298 * Q@dev Deposit tokens into the pool.

30: * @param amount The amount of tokens to deposit.
31: * @param index The index of the pool to deposit to.
32: x/

3¢ function deposit(uint amount, uint index) extermal {

As a result, during deposits, users will be subjected to slippage, leading to them receiving
fewer portfolio tokens/real amount than expected.

https://github.com/sherlock-audit/2025-07-allbridge-core-yield-judging/issues/241
https://github.com/sherlock-audit/2025-07-allbridge-core-yield/blob/main/core-auto-evm-contracts/contracts/PortfolioToken.sol#L33
https://github.com/sherlock-audit/2025-07-allbridge-core-yield/blob/main/core-auto-evm-contracts/contracts/PortfolioToken.sol#L33

The pool of the AllBridge protocol uses a formula similar to Curve's StableSwap.

The following Python script is directly translated from the PoolUtils.getD() function. The
script will compute the number of pool shares minted based on the current reserve (X
and Y, USDT and vUSD) of the pool.

import math

def compute_D(x, y, a):
Xy = X %y

pl = a * xy * (x + y)
p2 = (xy * ((a << 2) -1)) // 3
p3 = math.sqrt(pl * pl + p2 * p2 * p2)
if p3 > pi:
d_ = math.pow(p3 - p1, 1/3)
d_ = math.pow(pl + p3, 1/3) - d_
else:
d_ = math.pow(pl + p3, 1/3) + math.pow(pl - p3, 1/3)

return d_ * 2

def simulate_deposit(x, y, a, deposit):

0ld D = compute_D(x, y, a)

total = x + y

add_x = deposit * x // total

add_y = deposit * y // total

new_D = compute D(x + add_x, y + add_y, a)

lp_minted = new_D - o0ld_D
return lp_minted, old_D, new_D

Test parameters
a =10
deposit = 100

Scenario 1: Balanced
xl, y1 = 1000, 1000
lp_minted_1, DO_1, D1_1 = simulate_deposit(xl, yl, a, deposit)

Scenario 2: Imbalanced
x2, y2 = 1500, 500
lp_minted_2, DO_2, D1_2 = simulate_deposit(x2, y2, a, deposit)

Scenario 3: More Imbalanced
x3, y3 = 1800, 200
lp_minted_3, DO_3, D1_3 = simulate_deposit(x3, y3, a, deposit)

print("Scenario 1 (Balanced):")
print(f" LP minted: {lp_minted_13}")

https://github.com/sherlock-audit/2025-07-allbridge-core-yield/blob/main/core-auto-evm-contracts/contracts/lib/PoolUtils.sol#L8

print(f" D before: {DO_1}")
print(f" D after: {D1_1}\n")

print("Scenario 2 (Imbalanced):")
print(f" LP minted: {lp_minted_23}")
print(f" D before: {DO_2}")
print(f" D after: {D1_2}\n")

print ("Scenario 3 (More Imbalanced):")
print(f" LP minted: {lp_minted_3}")
print(f" D before: {DO_3}")

print(f" D after: {D1_3}")

Note that for StableSwap formula or implementation:

« If the pool is balanced, depositing 100 USDT will mint around 100 pool shares (e.g.,
99.99999999999818)

« However, when the pool is imbalanced (as shown in the 3rd scenario), depositing 100
USDT will only mint 96 pool shares.

Scenario 1 (Balanced):
LP minted: 99.99999999999818
D before: 2000.0
D after: 2099.999999999998

Scenario 2 (Imbalanced):
LP minted: 99.22424784315808
D before: 1984.4849568631507
D after: 2083.709204706309

Scenario 3 (More Imbalanced):
LP minted: 96.21928342445199
D before: 1924.3856684890352
D after: 2020.6049519134872

This proves that the amount of pool shares minted to the PortfolioToken contract is
dependent on the current state/reserve of the pool when the transaction is executed,
and is subject to slippage.

Assume that the share price is I:1in the PortfolioToken contract. One (1) pool
share/virtual token will mint one (1) portfolio token/real token.

Alice deposits 100 USDT to the PortfolioToken contract, and expects that 99.99999
portfolio tokens/real tokens will be minted to her. However, due to the slippage, she only
received 96 portfolio tokens/real tokens in return, resulting in a loss to Alice. If Alice
redeems his 96 portfolio, she will receive only around 96 USDT back.

Note that the pool is not always balanced. The pool can become imbalanced for many
reasons. For instance, if there is a large cross-chain transfer that swaps a large number

of vUSD to USDT OR swaps a large number of USDT to vUSD, the pool will become
imbalanced.

Note that it is expected that the imbalance pool will be arbitrage back to a balanced
pool. However, an important point is that arbitrage does not occur immediately, as it
takes time for the bots to notice the imbalance. If Alice's deposit transaction is executed
immediately after a large swap/cross-chain transfer, she will suffer significant slippage
due to imbalances in the pool.

Impact

Loss of funds for the victims, as demonstrated in the report.

PoC

No response

Mitigation

No response

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/allbridge-public/core-auto-evm-contracts/pull/1

https://github.com/allbridge-public/core-auto-evm-contracts/pull/1

Disclaimers

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

10

	Introduction
	Scope
	Final Commit Hash
	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged
	Security experts who found valid issues

	Issue M-1: Attacker can steal 100% of users deposits
	Found by
	Summary
	Root Cause
	Internal Pre-conditions
	External Pre-conditions
	Attack Path
	Impact
	PoC
	Mitigation

	Issue M-2: No slippage control
	Found by
	Summary
	Root Cause
	Internal Pre-conditions
	External Pre-conditions
	Attack Path
	Impact
	PoC
	Mitigation

	Discussion

	Disclaimers

